第六次青年几何分析小组会议通知
发布时间: 2017-03-15 01:37:04 浏览次数: 供稿:数学系
演讲人:胡雪,季丹丹,徐旭
讲座时间:2017-04-11 14:00:00
讲座地点:信息楼0343
讲座内容

为了加强青年几何分析学者之间的交流和促进彼此的合作,我们邀请了来自暨南大学、福建师范大学和武汉大学的三位青年几何分析学者到中国人民大学信息学院,于2017年4月11日下午和4月12日上午在中国人民大学信息楼0343召开一个小型会议。非常欢迎有兴趣的老师和研究生来参加此次会议!

此次会议不收取注册费,鉴于财力,住宿费和交通费自理。

中国人民大学信息学院

邀请人: 杨云雁、朱晓宝

Email: zhuxiaobao@amss.ac.cn

会议日程

会议地点:信息楼0343

会议安排:4月11日下午小组报告,4月12日上午自由讨论。

第一个报告:胡雪(暨南大学)

Time: 14:00~15:00

Title: On asymptotic expansions and curvature estimates for 4-dim conformally compact Bach flat manifolds

Abstract: We discuss the effect of the conformal infinity on a 4-dim conformally compact Bach flat manifold with constant scalar curvature. We show the asymptotic expansions of the 4-dim conformally compact Bach flat manifold near the conformal infinity and also give the curvature estimates.

第二个报告:季丹丹(福建师范大学)

Time:15:10~16:10

Title:Some research on isoperimetric surface of asymptotically hyperbolic manifolds

Abstract: In this talk, we will discuss our some joint with Y.G. Shi and B. Zhu. We focuses on the properties of isoperimetric surfaces in asymptotically hyperbolic manifold M with R≥-6 and the geometric relations between isoperimetric surfaces and asymptotically hyperbolic manifold. We prove that the isoperimetric regions with positive lower bounded volumes cannot drift off to the infinity of M provided that the asymptotically hyperbolic manifold M with R≥-6 is not standard hyperbolic space. Besides, we obtain a formula on expansion of isoperimetric profile in terms of renormalized under some conditions.

第三个报告:徐旭(武汉大学)

Time: 16:20~17:20

Title: On the global rigidity of sphere packings on 3-dimensional manifolds

Abstract: In this talk, we will give a proof of the global rigidity of sphere packings on 3-dimensional manifolds, which implies the uniqueness of hyperbolic structure on 4-dimensional manifolds. This is a 3-dimensional analogue of the rigidity in Andreev-Thurston theorem conjectured by Cooper and Rivin. We shall further study the global rigidity of the combinatorial scalar curvature introduced by Ge and the author.

演讲人简介